If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+12a-576=0
a = 3; b = 12; c = -576;
Δ = b2-4ac
Δ = 122-4·3·(-576)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-84}{2*3}=\frac{-96}{6} =-16 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+84}{2*3}=\frac{72}{6} =12 $
| 4y=-11+3 | | 281-w=109 | | 4(2x-1)+3=-27 | | 4(2x-1)+3=27 | | 4(2x+1)+3=27 | | 0.3(15)+0.5=0.2(x+15) | | 180=125-w | | 0.03(15)+0.05=0.2(x+15) | | 269=-x+42 | | 19=-7x-5(-3x+9) | | 3(-w-4)=-(24w-72) | | 8.2+7x=29.2 | | 7(7+x)=6(6+15) | | 6x+41=287 | | 4y=-7+3 | | 13h=-169 | | 2(c-81)=34 | | 6(y-84)=24 | | 4y=-27+3 | | 4y=-15+3 | | 13w+8w=20 | | 1/3(y+4)+6=1/2(3y-5)+3 | | 4y=-19+3 | | 5x+4x-2x+10=2x-x+25 | | 4x+8x=62-4x | | 4y=-20+3 | | 4y=-10+3 | | 8x-39=4x+15 | | 4a-28=8 | | 4y=-5+3 | | 4y=-4+3 | | -3/4x+1/4=-2 |